A truncated Levenberg-Marquardt algorithm for the calibration of highly parameterized nonlinear models

نویسندگان

  • Stefan Finsterle
  • Michael B. Kowalsky
چکیده

We propose a modification to the Levenberg-Marquardt minimization algorithm for a more robust and more efficient calibration of highly parameterized, strongly nonlinear models of multiphase flow through porous media. The new method combines the advantages of truncated singular value decomposition with those of the classical Levenberg-Marquardt algorithm, thus enabling a more robust solution of underdetermined inverse problems with complex relations between the parameters to be estimated and the observable state variables used for calibration. The truncation limit separating the solution space from the calibration null space is re-evaluated during the iterative calibration process. In between these re-evaluations, fewer forward simulations are required, compared to the standard approach, to calculate the approximate sensitivity matrix. Truncated singular values are used to calculate the Levenberg-Marquardt parameter updates, ensuring that safe small steps along the steepest-descent direction are taken for highly correlated parameters of low sensitivity, whereas efficient quasi-GaussNewton steps are taken for independent parameters with high impact. The performance of 1 Corresponding author; [email protected], Earth Sciences Division, 1 Cyclotron Road, MS 90-1116, Berkeley, CA 94720; phone: (510) 486-5205; fax: (510) 486-5686 the proposed scheme is demonstrated for a synthetic data set representing infiltration into a partially saturated, heterogeneous soil, where hydrogeological, petrophysical, and geostatistical parameters are estimated based on the joint inversion of hydrological and geophysical data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation

The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...

متن کامل

Computationally Efficient Regularized Inversion for Highly Parameterized MODFLOW Models

Though popular in the geophysical modeling community, specification of spatially distributed parameters at a scale commensurate with prevailing geological heterogeneity has not been possible in common groundwater modeling practice. The principal reasons for this are (1) the high computational burden of obtaining derivatives necessary for parameter estimation, (2) the memory required to store th...

متن کامل

One-Dimensional Modeling of Helicopter-Borne Electromagnetic Data Using Marquardt-Levenberg Including Backtracking-Armijo Line Search Strategy

In the last decades, helicopter-borne electromagnetic (HEM) method became a focus of interest in the fields of mineral exploration, geological mapping, groundwater resource investigation and environmental monitoring. As a standard approach, researchers use 1-D inversion of the acquired HEM data to recover the conductivity/resistivity-depth models. Since the relation between HEM data and model ...

متن کامل

An improved structure models to explain retention behavior of atmospheric nanoparticles

The quantitative structure-retention relationship (QSRR) of nanoparticles in roadside atmosphere against the comprehensive two-dimensional gas chromatography which was coupled to high-resolution time-of-flight mass spectrometry was studied. The genetic algorithm (GA) was employed to select the variables that resulted in the best-fitted models. After the variables were selected, the linear multi...

متن کامل

DAMAGE IDENTIFICATION OF TRUSSES BY FINITE ELEMENT MODEL UPDATING USING AN ENHANCED LEVENBERG-MARQUARDT ALGORITHM

This paper presents an efficient method for updating the structural finite element model. Model updating is performed through minimizing the difference of recorded acceleration of real damaged structure and hypothetical damaged structure, by updating physical parameters in each phase using iterative process of Levenberg-Marquardt algorithm. This algorithm is based on sensitivity analysis and pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Geosciences

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2011